Q.P. Code: 16EC402

R16

6M

Reg. No:

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech III Year I Semester Supplementary Examinations August-2021 SWITCHING THEORY AND LOGIC DESIGN

		SWITCHING THEORY AND LOGIC DESIGN	
		(Electrical and Electronics Engineering)	
Time	: 3	hours Max. Mar	ks: 60
		(Answer all Five Units $5 \times 12 = 60$ Marks)	
		UNIT-I	CNA
1	a	Perform the following	6 M
		i) Subtraction by using 10's complement for the given 3456 - 245.	
		ii)Subtraction by using 2's complement for the given 111001-1010.	
	b	i) State Duality theorem. List Boolean laws and their Duals.	6M
		ii) Simplify the following Boolean expressions to minimum no. of literals.	
		(BC'+A'D)(AB'+CD') OR	
2	0	i) Perform the following using BCD arithmetic $(79)_{10} + (177)_{10}$	6M
	a	ii)Convert the following to gray code (BC54) ₁₆	VIVI
	h	Write expressing in canonical form $F = (A+B)(B+C)$	6M
	D	UNIT-II	0111
3	•	Minimize the following Boolean function using K-Map	6M
3	a	F(A,B,C,D)= $\sum (1,3,7,11,15)+d(0,2,5)$	UIVI
	h	Simplify the following Boolean function for minimal POS form using K-map	6M
	D	F(X,Y,Z) = X'YZ + XY'Z' + XYZ + XYZ	0111
		OR	
4	a	Minimize the given Boolean function $F(A,B,C,D) = \sum m(0,1,2,3,6,7,13,15)$ using	7M
		tabulation method and implement using basic gates.	
	b	Implement the following Boolean equation using only NAND gates Y=AB+CDE+F.	5M
		UNIT-III	
5	a	Design & implement a 4-bit Binary-To-Gray code converter.	6M
	b	Design & implement Full Adder using Decoder.	6M
		OR	
6		What is encoder? Design octal to binary encoder.	5M
	b	Explain Carry Look Ahead Adder circuit with the help of logic diagram.	7M
		UNIT-IV	
7	a	Design D Flip Flop by using SR Flip Flop and draw the timing diagram.	6M
	b	With a neat sketch explain MOD 6 Johnson counter using D FF.	6M
		OR	
8	a	Draw the circuit of JK flip flop using NAND gates and explain its operation.	6M
	b	Design a binary counter having repeated binary sequence using JK flip flops:	6M
		0,1,2,4,5,6.	
		UNIT-V	
9	a	Implement the following Boolean function using PLA	6M
		$F_1(w,x,y,z) = \Sigma m(0,1,3,5,9,13)$ $F_2(w,x,y,z) = \Sigma m(0,2,4,5,7,9,11,15)$	
	b	Discuss Mealy & Moore Machine models of sequential machines.	6M
		OR	
10	a	Give the logic implementation of a 32x4 bit ROM using a decoder of a suitable figure.	6M

*** END ***

b Differentiate among ROM, PROM, DROM, EPROM, EEPROM, and RAM.